Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 656: 80-92, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984173

RESUMO

This paper reports a quadruple-strategy for material design, simultaneously applying morphology control, group modification, defect engineering and alkali metal doping to the design of catalysts, and successfully constructing irregular clusters of carbon nitride (pMNK-CN) with excellent photogenerated carrier separation performance and structural stability. The pMNK-CN is an irregular flower cluster-like morphology with a nanosheet structure on the surface, and the repolymerization process of the prepolymer in the microvoid of the metal salt gives it an open pore structure. With the help of essential characterization, it was confirmed that the heptazine unit in the backbone underwent partial decomposition due to the etching of metal salts at high temperatures, reducing the overall polymerization and introducing cyano and nitrogen vacancies. Meanwhile, the potassium ion embedded in the lattice can induce the growth of ordered structures and thus improve the short-range order. The pMNK-CN possesses a hydrogen peroxide production efficiency of 240.0 µmol·g-1·h-1 in pure water, which is 31 times higher than that of bulk carbon nitride. And the apparent quantum efficiencies of pMNK-CN in the 380 and 420 nm bands are 17.5 % and 14.8 % in the presence of isopropanol. The effects of each modification strategies on the electronic structure of carbon nitride were investigated using First-Principles, and it was demonstrated that the multiple modification strategies synergistically enhanced the optical absorption, photogenerated charge separation efficiency, and lowered the reaction energy barrier, thus greatly contributing to the oxygen reduction to hydrogen peroxide performance.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770362

RESUMO

An S-doped CdO@In2O3 nanofiber was successfully designed by in-situ electrospinning along and subsequent calcination treatment. Under artificial sunlight illumination, the S/CdO@In2O3-25 displayed a superior photocatalytic hydrogen evolution rate of 4564.58 µmol·g-1·h-1, with approximately 22.0 and 1261.0-fold of those shown by the S/CdO and S/In2O3 samples, respectively. The experimental and theoretical analyses illustrate that the unique one-dimensional (1D) nanofiber morphology and rich oxygen vacancies optimized the electronic structure of the nanofibers and adsorption/desorption behaviors of reaction intermediates, contributing to the realization of the remarkable solar-to-H2 conversion efficiencies. Moreover, the staggered band structure and intimate contact heterointerfaces facilitate the formation of a type-II double charge-transfer pathway, promoting the spatial separation of photoexcited charge carriers. These results could inform the design of other advanced catalyst materials for photocatalytic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...